runtime#
- group Runtime and library contexts
Runtime and Library contexts for the management and launching of tasks.
Enums
-
enum class ExceptionMode : std::uint8_t#
Enum for exception handling modes.
Values:
-
enumerator IMMEDIATE#
Handles exceptions immediately. Any throwable task blocks until completion.
-
enumerator DEFERRED#
Defers all exceptions until the current scope exits.
-
enumerator IGNORED#
All exceptions are ignored.
-
enumerator IMMEDIATE#
Functions
-
std::int32_t start(std::int32_t argc, char *argv[])#
Starts the Legate runtime.
- Deprecated:
Use the argument-less version of this function instead:
start()
See also
- Parameters:
argc – Argument is ignored.
argv – Argument is ignored.
- Returns:
Always returns 0
-
void start()#
Starts the Legate runtime.
This makes the runtime ready to accept requests made via its APIs. It may be called any number of times, only the first call has any effect.
- Throws:
ConfigurationError – If runtime configuration fails.
AutoConfigurationError – If the automatic configuration heuristics fail.
-
bool has_started()#
Checks if the runtime has started.
- Returns:
true
if the runtime has started,false
if the runtime has not started yet or afterfinish()
is called.
-
bool has_finished()#
Checks if the runtime has finished.
- Returns:
true
iffinish()
has been called,false
otherwise.
-
std::int32_t finish()#
Waits for the runtime to finish.
The client code must call this to make sure all Legate tasks run
- Returns:
Non-zero value when the runtime encountered a failure, 0 otherwise
-
void destroy()#
-
template<typename T>
void register_shutdown_callback(T &&callback)# Registers a callback that should be invoked during the runtime shutdown.
Any callbacks will be invoked before the core library and the runtime are destroyed. All callbacks must be non-throwable. Multiple registrations of the same callback are not deduplicated, and thus clients are responsible for registering their callbacks only once if they are meant to be invoked as such. Callbacks are invoked in the FIFO order, and thus any callbacks that are registered by another callback will be added to the end of the list of callbacks. Callbacks can launch tasks and the runtime will make sure of their completion before initializing its shutdown.
- Parameters:
callback – A shutdown callback
-
mapping::Machine get_machine()#
Returns the machine for the current scope.
- Returns:
Machine object
-
bool is_running_in_task()#
Checks if the code is running in a task.
- Returns:
true If the code is running in a task
- Returns:
false If the code is not running in a task
-
class Library
- #include <legate/runtime/library.h>
A library class that provides APIs for registering components.
Public Functions
-
std::string_view get_library_name() const
Returns the name of the library.
- Returns:
Library name
-
std::string_view get_task_name(LocalTaskID local_task_id) const
Returns the name of a task.
- Parameters:
local_task_id – Task id
- Returns:
Name of the task
-
template<typename REDOP>
GlobalRedopID register_reduction_operator( - LocalRedopID redop_id
Registers a library specific reduction operator.
The type parameter
REDOP
points to a class that implements a reduction operator. Each reduction operator class has the following structure:struct RedOp { using LHS = ...; // Type of the LHS values using RHS = ...; // Type of the RHS values static const RHS identity = ...; // Identity of the reduction operator template <bool EXCLUSIVE> LEGATE_HOST_DEVICE inline static void apply(LHS& lhs, RHS rhs) { ... } template <bool EXCLUSIVE> LEGATE_HOST_DEVICE inline static void fold(RHS& rhs1, RHS rhs2) { ... } };
Semantically, Legate performs reductions of values
V0
, …,Vn
to elementE
in the following way:I.e., Legate gathers all reduction contributions usingRHS T = RedOp::identity; RedOp::fold(T, V0) ... RedOp::fold(T, Vn) RedOp::apply(E, T)
fold
and applies the accumulator to the element usingapply
.Oftentimes, the LHS and RHS of a reduction operator are the same type and
fold
andapply
perform the same computation, but that’s not mandatory. For example, one may implement a reduction operator for subtraction, where thefold
would sum up all RHS values whereas theapply
would subtract the aggregate value from the LHS.The reduction operator id (
REDOP_ID
) can be local to the library but should be unique for each operator within the library.Finally, the contract for
apply
andfold
is that they must update the reference atomically when theEXCLUSIVE
isfalse
.Warning
Because the runtime can capture the reduction operator and wrap it with CUDA boilerplates only at compile time, the registration call should be made in a .cu file that would be compiled by NVCC. Otherwise, the runtime would register the reduction operator in CPU-only mode, which can degrade the performance when the program performs reductions on non-scalar stores.
- Template Parameters:
REDOP – Reduction operator to register
- Parameters:
redop_id – Library-local reduction operator ID
- Returns:
Global reduction operator ID
- void register_task(
- LocalTaskID local_task_id,
- const TaskInfo &task_info
Register a task with the library.
See also
- Parameters:
local_task_id – The library-local task ID to assign for this task.
task_info – The
TaskInfo
object describing the task.
- Throws:
std::out_of_range – If the chosen local task ID exceeds the maximum local task ID for the library.
std::invalid_argument – If the task (or another task with the same
local_task_id
) has already been registered with the library.
-
TaskInfo find_task(LocalTaskID local_task_id) const
Look up a task registered with the library.
See also
- Parameters:
local_task_id – The task ID to find.
- Throws:
std::out_of_range – If the task could not be found.
- Returns:
The
TaskInfo
object describing the task.
-
std::string_view get_library_name() const
-
struct ResourceConfig#
- #include <legate/runtime/resource.h>
POD for library configuration.
Public Members
-
std::int64_t max_tasks = {1024}#
Maximum number of tasks that the library can register.
-
std::int64_t max_dyn_tasks = {0}#
Maximum number of dynamic tasks that the library can register (cannot exceed max_tasks)
-
std::int64_t max_reduction_ops = {}#
Maximum number of custom reduction operators that the library can register.
-
std::int64_t max_tasks = {1024}#
-
class Runtime
- #include <legate/runtime/runtime.h>
Class that implements the Legate runtime.
The legate runtime provides common services, including as library registration, store creation, operator creation and submission, resource management and scoping, and communicator management. Legate libraries are free of all these details about distribute programming and can focus on their domain logics.
Public Functions
- Library create_library(
- std::string_view library_name,
- const ResourceConfig &config = ResourceConfig{},
- std::unique_ptr<mapping::Mapper> mapper = nullptr,
- std::map<VariantCode, VariantOptions> default_options = {}
Creates a library.
A library is a collection of tasks and custom reduction operators. The maximum number of tasks and reduction operators can be optionally specified with a
ResourceConfig
object. Each library can optionally have a mapper that specifies mapping policies for its tasks. When no mapper is given, the default mapper is used.
-
Library find_library(std::string_view library_name) const
Finds a library.
- std::optional<Library> maybe_find_library(
- std::string_view library_name
Attempts to find a library.
If no library exists for a given name, a null value will be returned
- Library find_or_create_library(
- std::string_view library_name,
- const ResourceConfig &config = ResourceConfig{},
- std::unique_ptr<mapping::Mapper> mapper = nullptr,
- const std::map<VariantCode, VariantOptions> &default_options = {},
- bool *created = nullptr
Finds or creates a library.
The optional configuration and mapper objects are picked up only when the library is created.
- Parameters:
library_name – Library name. Must be unique to this library
config – Optional configuration object
mapper – Optional mapper object
default_options – Optional default task variant options
created – Optional pointer to a boolean flag indicating whether the library has been created because of this call
- Returns:
Context object for the library
-
AutoTask create_task(Library library, LocalTaskID task_id)
Creates an AutoTask.
- Parameters:
library – Library to query the task
task_id – Library-local Task ID
- Returns:
Task object
- ManualTask create_task(
- Library library,
- LocalTaskID task_id,
- const tuple<std::uint64_t> &launch_shape
Creates a ManualTask.
- Parameters:
library – Library to query the task
task_id – Library-local Task ID
launch_shape – Launch domain for the task
- Returns:
Task object
- ManualTask create_task(
- Library library,
- LocalTaskID task_id,
- const Domain &launch_domain
Creates a ManualTask.
This overload should be used when the lower bounds of the task’s launch domain should be non-zero. Note that the upper bounds of the launch domain are inclusive (whereas the
launch_shape
in the other overload is exclusive).- Parameters:
library – Library to query the task
task_id – Library-local Task ID
launch_domain – Launch domain for the task
- Returns:
Task object
- void issue_copy(
- LogicalStore &target,
- const LogicalStore &source,
- std::optional<ReductionOpKind> redop_kind = std::nullopt
Issues a copy between stores.
The source and target stores must have the same shape.
- Parameters:
target – Copy target
source – Copy source
redop_kind – ID of the reduction operator to use (optional). The store’s type must support the operator.
- Throws:
std::invalid_argument – If the store’s type doesn’t support the reduction operator
- void issue_copy(
- LogicalStore &target,
- const LogicalStore &source,
- std::optional<std::int32_t> redop_kind
Issues a copy between stores.
The source and target stores must have the same shape.
- Parameters:
target – Copy target
source – Copy source
redop_kind – ID of the reduction operator to use (optional). The store’s type must support the operator.
- Throws:
std::invalid_argument – If the store’s type doesn’t support the reduction operator
- void issue_gather(
- LogicalStore &target,
- const LogicalStore &source,
- const LogicalStore &source_indirect,
- std::optional<ReductionOpKind> redop_kind = std::nullopt
Issues a gather copy between stores.
The indirection store and the target store must have the same shape.
- Parameters:
target – Copy target
source – Copy source
source_indirect – Store for source indirection
redop_kind – ID of the reduction operator to use (optional). The store’s type must support the operator.
- Throws:
std::invalid_argument – If the store’s type doesn’t support the reduction operator
- void issue_gather(
- LogicalStore &target,
- const LogicalStore &source,
- const LogicalStore &source_indirect,
- std::optional<std::int32_t> redop_kind
Issues a gather copy between stores.
The indirection store and the target store must have the same shape.
- Parameters:
target – Copy target
source – Copy source
source_indirect – Store for source indirection
redop_kind – ID of the reduction operator to use (optional). The store’s type must support the operator.
- Throws:
std::invalid_argument – If the store’s type doesn’t support the reduction operator
- void issue_scatter(
- LogicalStore &target,
- const LogicalStore &target_indirect,
- const LogicalStore &source,
- std::optional<ReductionOpKind> redop_kind = std::nullopt
Issues a scatter copy between stores.
The indirection store and the source store must have the same shape.
- Parameters:
target – Copy target
target_indirect – Store for target indirection
source – Copy source
redop_kind – ID of the reduction operator to use (optional). The store’s type must support the operator.
- Throws:
std::invalid_argument – If the store’s type doesn’t support the reduction operator
- void issue_scatter(
- LogicalStore &target,
- const LogicalStore &target_indirect,
- const LogicalStore &source,
- std::optional<std::int32_t> redop_kind
Issues a scatter copy between stores.
The indirection store and the source store must have the same shape.
- Parameters:
target – Copy target
target_indirect – Store for target indirection
source – Copy source
redop_kind – ID of the reduction operator to use (optional). The store’s type must support the operator.
- Throws:
std::invalid_argument – If the store’s type doesn’t support the reduction operator
- void issue_scatter_gather(
- LogicalStore &target,
- const LogicalStore &target_indirect,
- const LogicalStore &source,
- const LogicalStore &source_indirect,
- std::optional<ReductionOpKind> redop_kind = std::nullopt
Issues a scatter-gather copy between stores.
The indirection stores must have the same shape.
- Parameters:
target – Copy target
target_indirect – Store for target indirection
source – Copy source
source_indirect – Store for source indirection
redop_kind – ID of the reduction operator to use (optional). The store’s type must support the operator.
- Throws:
std::invalid_argument – If the store’s type doesn’t support the reduction operator
- void issue_scatter_gather(
- LogicalStore &target,
- const LogicalStore &target_indirect,
- const LogicalStore &source,
- const LogicalStore &source_indirect,
- std::optional<std::int32_t> redop_kind
Issues a scatter-gather copy between stores.
The indirection stores must have the same shape.
- Parameters:
target – Copy target
target_indirect – Store for target indirection
source – Copy source
source_indirect – Store for source indirection
redop_kind – ID of the reduction operator to use (optional). The store’s type must support the operator.
- Throws:
std::invalid_argument – If the store’s type doesn’t support the reduction operator
-
void issue_fill(const LogicalArray &lhs, const LogicalStore &value)
Fills a given array with a constant.
- Parameters:
lhs – Logical array to fill
value – Logical store that contains the constant value to fill the array with
-
void issue_fill(const LogicalArray &lhs, const Scalar &value)
Fills a given array with a constant.
- Parameters:
lhs – Logical array to fill
value – Value to fill the array with
- LogicalStore tree_reduce(
- Library library,
- LocalTaskID task_id,
- const LogicalStore &store,
- std::int32_t radix = 4
Performs reduction on a given store via a task.
- Parameters:
library – The library for the reducer task
task_id – reduction task ID
store – Logical store to reduce
radix – Optional radix value that determines the maximum number of input stores to the task at each reduction step
-
void submit(AutoTask &&task)
Submits an AutoTask for execution.
Each submitted operation goes through multiple pipeline steps to eventually get scheduled for execution. It’s not guaranteed that the submitted operation starts executing immediately.
The runtime takes the ownership of the submitted task. Once submitted, the task becomes invalid and is not reusable.
- Parameters:
task – An AutoTask to execute
-
void submit(ManualTask &&task)
Submits a ManualTask for execution.
Each submitted operation goes through multiple pipeline steps to eventually get scheduled for execution. It’s not guaranteed that the submitted operation starts executing immediately.
The runtime takes the ownership of the submitted task. Once submitted, the task becomes invalid and is not reusable.
- Parameters:
task – A ManualTask to execute
- LogicalArray create_array(
- const Type &type,
- std::uint32_t dim = 1,
- bool nullable = false
Creates an unbound array.
- Parameters:
type – Element type
dim – Number of dimensions
nullable – Nullability of the array
- Returns:
Logical array
- LogicalArray create_array( )
Creates a normal array.
- Parameters:
shape – Shape of the array. The call does not block on this shape
type – Element type
nullable – Nullability of the array
optimize_scalar – When true, the runtime internally uses futures optimized for storing scalars
- Returns:
Logical array
- LogicalArray create_array_like(
- const LogicalArray &to_mirror,
- std::optional<Type> type = std::nullopt
Creates an array isomorphic to the given array.
- Parameters:
to_mirror – The array whose shape would be used to create the output array. The call does not block on the array’s shape.
type – Optional type for the resulting array. Must be compatible with the input array’s type
- Returns:
Logical array isomorphic to the input
- StringLogicalArray create_string_array(
- const LogicalArray &descriptor,
- const LogicalArray &vardata
Creates a string array from the existing sub-arrays.
The caller is responsible for making sure that the vardata sub-array is valid for all the descriptors in the descriptor sub-array
- Parameters:
descriptor – Sub-array for descriptors
vardata – Sub-array for characters
- Throws:
std::invalid_argument – When any of the following is true: 1)
descriptor
orvardata
is unbound or N-D where N > 1 2)descriptor
does not have a 1D rect type 3)vardata
is nullable 4)vardata
does not have an int8 type- Returns:
String logical array
- ListLogicalArray create_list_array(
- const LogicalArray &descriptor,
- const LogicalArray &vardata,
- std::optional<Type> type = std::nullopt
Creates a list array from the existing sub-arrays.
The caller is responsible for making sure that the vardata sub-array is valid for all the descriptors in the descriptor sub-array
- Parameters:
descriptor – Sub-array for descriptors
vardata – Sub-array for vardata
type – Optional list type the returned array would have
- Throws:
std::invalid_argument – When any of the following is true: 1)
type
is not a list type 2)descriptor
orvardata
is unbound or N-D where N > 1 3)descriptor
does not have a 1D rect type 4)vardata
is nullable 5)vardata
andtype
have different element types- Returns:
List logical array
-
LogicalStore create_store(const Type &type, std::uint32_t dim = 1)
Creates an unbound store.
- Parameters:
type – Element type
dim – Number of dimensions of the store
- Returns:
Logical store
- LogicalStore create_store( )
Creates a normal store.
- Parameters:
shape – Shape of the store. The call does not block on this shape.
type – Element type
optimize_scalar – When true, the runtime internally uses futures optimized for storing scalars
- Returns:
Logical store
- LogicalStore create_store( )
Creates a normal store out of a
Scalar
object.- Parameters:
scalar – Value of the scalar to create a store with
shape – Shape of the store. The volume must be 1. The call does not block on this shape.
- Returns:
Logical store
- LogicalStore create_store(
- const Shape &shape,
- const Type &type,
- void *buffer,
- bool read_only = true,
- const mapping::DimOrdering &ordering = mapping::DimOrdering::c_order()
Creates a store by attaching to an existing allocation.
See also
legate::ExternalAllocation For important instructions regarding the mutability and lifetime management of the attached allocation.
- Parameters:
shape – Shape of the store. The call does not block on this shape.
type – Element type.
buffer – Pointer to the beginning of the allocation to attach to; allocation must be contiguous, and cover the entire contents of the store (at least
extents.volume() * type.size()
bytes).read_only – Whether the allocation is read-only.
ordering – In what order the elements are laid out in the passed buffer.
- Returns:
Logical store.
- LogicalStore create_store(
- const Shape &shape,
- const Type &type,
- const ExternalAllocation &allocation,
- const mapping::DimOrdering &ordering = mapping::DimOrdering::c_order()
Creates a store by attaching to an existing allocation.
See also
legate::ExternalAllocation For important instructions regarding the mutability and lifetime management of the attached allocation.
- Parameters:
shape – Shape of the store. The call does not block on this shape.
type – Element type.
allocation – External allocation descriptor.
ordering – In what order the elements are laid out in the passed allocation.
- Returns:
Logical store.
- std::pair<LogicalStore, LogicalStorePartition> create_store(
- const Shape &shape,
- const tuple<std::uint64_t> &tile_shape,
- const Type &type,
- const std::vector<std::pair<ExternalAllocation, tuple<std::uint64_t>>> &allocations,
- const mapping::DimOrdering &ordering = mapping::DimOrdering::c_order()
Creates a store by attaching to multiple existing allocations.
External allocations must be read-only.
See also
legate::ExternalAllocation For important instructions regarding the mutability and lifetime management of the attached allocation.
- Parameters:
shape – Shape of the store. The call can BLOCK on this shape for constructing a store partition.
tile_shape – Shape of tiles.
type – Element type.
allocations – Pairs of external allocation descriptors and sub-store colors.
ordering – In what order the elements are laid out in the passed allocatios.
- Throws:
std::invalid_argument – If any of the external allocations are not read-only.
- Returns:
A pair of a logical store and its partition.
- void prefetch_bloated_instances(
- const LogicalStore &store,
- tuple<std::uint64_t> low_offsets,
- tuple<std::uint64_t> high_offsets,
- bool initialize = false
Gives the runtime a hint that the store can benefit from bloated instances.
The runtime currently does not look ahead in the task stream to recognize that a given set of tasks can benefit from the ahead-of-time creation of “bloated” instances encompassing multiple slices of a store. This means that the runtime will construct bloated instances incrementally and completely only when it sees all the slices, resulting in intermediate instances that (temporarily) increases the memory footprint. This function can be used to give the runtime a hint ahead of time about the bloated instances, which would be reused by the downstream tasks without going through the same incremental process.
For example, let’s say we have a 1-D store A of size 10 and we want to partition A across two GPUs. By default, A would be partitioned equally and each GPU gets an instance of size 5. Suppose we now have a task that aligns two slices A[1:10] and A[:9]. The runtime would partition the slices such that the task running on the first GPU gets A[1:6] and A[:5], and the task running on the second GPU gets A[6:] and A[5:9]. Since the original instance on the first GPU does not cover the element A[5] included in the first slice A[1:6], the mapper needs to create a new instance for A[:6] that encompasses both of the slices, leading to an extra copy. In this case, if the code calls
prefetch(A, {0}, {1})
to pre-alloate instances that contain one extra element on the right before it uses A, the extra copy can be avoided.A couple of notes about the API:
Unless
initialize
istrue
, the runtime assumes that the store has been initialized. Passing an uninitialized store would lead to a runtime error.If the store has pre-existing instances, the runtime may combine those with the bloated instances if such combination is deemed desirable.
Note
This API is experimental
- Parameters:
store – Store to create bloated instances for
low_offsets – Offsets to bloat towards the negative direction
high_offsets – Offsets to bloat towards the positive direction
initialize – If
true
, the runtime will issue a fill on the store to initialize it. The default value isfalse
-
void issue_mapping_fence()
Issues a mapping fence.
A mapping fence, when issued, blocks mapping of all downstream operations before those preceding the fence get mapped. An
issue_mapping_fence
call returns immediately after the request is submitted to the runtime, and the fence asynchronously goes through the runtime analysis pipeline just like any other Legate operations. The call also flushes the scheduling window for batched execution.Mapping fences only affect how the operations are mapped and do not change their execution order, so they are semantically no-op. Nevertheless, they are sometimes useful when the user wants to control how the resource is consumed by independent tasks. Consider a program with two independent tasks A and B, both of which discard their stores right after their execution. If the stores are too big to be allocated all at once, mapping A and B in parallel (which can happen because A and B are independent and thus nothing stops them from getting mapped concurrently) can lead to a failure. If a mapping fence exists between the two, the runtime serializes their mapping and can reclaim the memory space from stores that would be discarded after A’s execution to create allocations for B.
-
void issue_execution_fence(bool block = false)
Issues an execution fence.
An execution fence is a join point in the task graph. All operations prior to a fence must finish before any of the subsequent operations start.
All execution fences are mapping fences by definition; i.e., an execution fence not only prevents the downstream operations from being mapped ahead of itself but also precedes their execution.
- Parameters:
block – When
true
, the control code blocks on the fence and all operations that have been submitted prior to this fence.
-
void raise_pending_exception()
Raises a pending exception.
When the exception mode of a scope is “deferred” (i.e., Scope::exception_mode() == ExceptionMode::DEFERRED), the exceptions from tasks in the scope are not immediately handled, but are pushed to the pending exception queue. Accumulated pending exceptions are not flushed until raise_pending_exception is invoked. The function throws the first exception in the pending exception queue and clears the queue. If there is no pending exception to be raised, the function does nothing.
- Throws:
legate::TaskException – When there is a pending exception to raise
-
std::uint32_t node_count() const
Returns the total number of nodes.
- Returns:
Total number of nodes
-
std::uint32_t node_id() const
Returns the current rank.
- Returns:
Rank ID
-
mapping::Machine get_machine() const
Returns the machine of the current scope.
- Returns:
Machine object
-
Processor get_executing_processor() const
Returns the current Processor on which the caller is executing.
- Returns:
The current Processor.
-
void start_profiling_range()
Start a Legion profiling range.
-
void stop_profiling_range(std::string_view provenance)
Stop a Legion profiling range.
- Parameters:
provenance – User-supplied provenance string
Public Static Functions
-
static Runtime *get_runtime()
Returns a singleton runtime object.
- Returns:
The runtime object
-
namespace detail
Typedefs
-
using StoreAnalyzable = std::variant<RegionFieldArg, OutputRegionArg, ScalarStoreArg, ReplicatedScalarStoreArg, WriteOnlyScalarStoreArg>
-
using ArrayAnalyzable = std::variant<BaseArrayArg, ListArrayArg, StructArrayArg>
-
using Analyzable = variant_detail::variant_concat_t<StoreAnalyzable, ArrayAnalyzable>
-
using Restrictions = tuple<Restriction>
-
typedef BasicZStringView<char, std::char_traits<char>> ZStringView
-
template<typename Default, template<typename...> typename Op, typename ...Args>
using detected_or = detected_detail::detector<Default, void, Op, Args...>
-
template<template<typename...> typename Op, typename ...Args>
using is_detected = detected_or<detected_detail::nonesuch, Op, Args...>
-
template<template<typename...> class Op, typename ...Args>
using is_detected_t = typename is_detected<Op, Args...>::type
-
template<typename T>
using type_identity_t = typename type_identity<T>::type
Enums
-
enum class ArrayKind : std::uint8_t
Values:
-
enumerator BASE
-
enumerator LIST
-
enumerator STRUCT
-
enumerator BASE
-
enum class AccessMode : std::uint8_t
Values:
-
enumerator READ
-
enumerator REDUCE
-
enumerator WRITE
-
enumerator READ
-
enum class Restriction : std::uint8_t
Enum to describe partitioning preference on dimensions of a store.
Values:
-
enumerator ALLOW
The dimension can be partitioned
-
enumerator AVOID
The dimension can be partitioned, but other dimensions are preferred
-
enumerator FORBID
The dimension must not be partitioned
-
enumerator ALLOW
-
enum class ExceptionKind : std::uint8_t
Values:
-
enumerator CPP
-
enumerator PYTHON
-
enumerator CPP
-
enum class CoreProjectionOp : std::int32_t
Values:
-
enumerator DELINEARIZE
-
enumerator FIRST_DYNAMIC_FUNCTOR
-
enumerator MAX_FUNCTOR
-
enumerator DELINEARIZE
-
enum class CoreShardID : std::underlying_type_t<CoreProjectionOp>
Values:
-
enumerator TOPLEVEL_TASK
-
enumerator LINEARIZE
-
enumerator TOPLEVEL_TASK
-
enum class CoreTransform : std::int8_t
Values:
-
enumerator INVALID
-
enumerator SHIFT
-
enumerator PROMOTE
-
enumerator PROJECT
-
enumerator TRANSPOSE
-
enumerator DELINEARIZE
-
enumerator INVALID
-
enum class TaskPriority : std::int8_t
Values:
-
enumerator DEFAULT
-
enumerator DEFAULT
Functions
- void show_progress(
- const Legion::Task *task,
- Legion::Context ctx,
- Legion::Runtime *runtime
-
void check_alignment(std::size_t alignment)
-
void register_array_tasks(Library &core_lib)
- const InternalSharedPtr<Storage> &self,
- InternalSharedPtr<Partition> partition,
- std::optional<bool> complete
- const InternalSharedPtr<Storage> &self,
- tuple<std::uint64_t> tile_shape,
- tuple<std::int64_t> offsets
- const InternalSharedPtr<LogicalStore> &self,
- std::int32_t dim,
- Slice sl
- const InternalSharedPtr<LogicalStore> &self,
- tuple<std::uint64_t> tile_shape
- const InternalSharedPtr<LogicalStore> &self,
- InternalSharedPtr<Partition> partition,
- std::optional<bool> complete = std::nullopt
- const InternalSharedPtr<LogicalStore> &self,
- const Variable *variable,
- const Strategy &strategy,
- const Domain &launch_domain,
- const std::optional<SymbolicPoint> &projection,
- Legion::PrivilegeMode privilege,
- GlobalRedopID redop = GlobalRedopID{-1}
- const InternalSharedPtr<LogicalStore> &self,
- const Domain &launch_domain,
- Legion::PrivilegeMode privilege
- std::ostream &operator<<(
- std::ostream &out,
- const Transform &transform
-
template<typename T>
inline decltype(auto) canonical_value_of( - T &&v
-
inline std::uint64_t canonical_value_of(std::size_t v) noexcept
- InternalSharedPtr<Alignment> align( )
-
InternalSharedPtr<Broadcast> broadcast(const Variable *variable)
- InternalSharedPtr<Broadcast> broadcast( )
- InternalSharedPtr<ImageConstraint> image(
- const Variable *var_function,
- const Variable *var_range,
- ImageComputationHint hint
- InternalSharedPtr<ScaleConstraint> scale( )
- InternalSharedPtr<BloatConstraint> bloat(
- const Variable *var_source,
- const Variable *var_bloat,
- tuple<std::uint64_t> low_offsets,
- tuple<std::uint64_t> high_offsets
-
InternalSharedPtr<NoPartition> create_no_partition()
- InternalSharedPtr<Tiling> create_tiling( )
- InternalSharedPtr<Tiling> create_tiling(
- tuple<std::uint64_t> tile_shape,
- tuple<std::uint64_t> color_shape,
- tuple<std::int64_t> offsets,
- tuple<std::uint64_t> strides
- InternalSharedPtr<Weighted> create_weighted(
- const Legion::FutureMap &weights,
- const Domain &color_domain
- InternalSharedPtr<detail::LogicalStore> func,
- InternalSharedPtr<Partition> func_partition,
- mapping::detail::Machine machine,
- ImageComputationHint hint
- std::ostream &operator<<(
- std::ostream &out,
- const Partition &partition
-
void register_partitioning_tasks(Library &core_lib)
-
Restriction join(Restriction lhs, Restriction rhs)
-
Restrictions join(const Restrictions &lhs, const Restrictions &rhs)
-
void join_inplace(Restrictions &lhs, const Restrictions &rhs)
-
template<typename T>
std::ostream &operator<<( - std::ostream &os,
- const Scaled<T> &arg
-
template<typename T>
std::ostream &operator<<( - std::ostream &os,
- const Argument<T> &arg
-
std::string compose_legion_default_args(const ParsedArgs &parsed)
Compose the contents of
LEGION_DEFAULT_ARGS
.This routine does not actually set
LEGION_DEFAULT_ARGS
, it only computes what the new value should be.This is technically a private function, but we expose it to test it.
- Parameters:
parsed – The parsed command-line arguments.
- Returns:
The new value of
LEGION_DEFAULT_ARGS
.
-
void configure_legion(const ParsedArgs &parsed)
Configure Legion based on parsed command-line flags.
This function sets
LEGION_DEFAULT_ARGS
.- Parameters:
parsed – The parsed command-line arguments.
-
void configure_realm(const ParsedArgs &parsed)
Configure Realm based on the command-line flags.
- Parameters:
parsed – The command-line flags.
- void configure_cpus(
- bool auto_config,
- const Realm::ModuleConfig &core,
- const Argument<std::int32_t> &omps,
- const Argument<std::int32_t> &util,
- const Argument<std::int32_t> &gpus,
- Argument<std::int32_t> *cpus
- void configure_cuda_driver_path(
- const Argument<std::string> &cuda_driver_path
- void configure_fbmem(
- bool auto_config,
- const Realm::ModuleConfig *cuda,
- const Argument<std::int32_t> &gpus,
- Argument<Scaled<std::int64_t>> *fbmem
- void configure_gpus(
- bool auto_config,
- const Realm::ModuleConfig *cuda,
- Argument<std::int32_t> *gpus,
- Config *cfg
-
std::string convert_log_levels(std::string_view log_levels)
Convert text-based logging levels to the numeric logging levels that Legion expects.
- Parameters:
log_levels – The logging string specification.
- Returns:
The converted log levels.
-
std::string logging_help_str()
- void configure_numamem(
- bool auto_config,
- Span<const std::size_t> numa_mems,
- const Argument<std::int32_t> &omps,
- Argument<Scaled<std::int64_t>> *numamem
- void configure_ompthreads(
- bool auto_config,
- const Realm::ModuleConfig &core,
- const Argument<std::int32_t> &util,
- const Argument<std::int32_t> &cpus,
- const Argument<std::int32_t> &gpus,
- const Argument<std::int32_t> &omps,
- Argument<std::int32_t> *ompthreads,
- Config *cfg
- void configure_omps(
- bool auto_config,
- const Realm::ModuleConfig *openmp,
- Span<const std::size_t> numa_mems,
- const Argument<std::int32_t> &gpus,
- Argument<std::int32_t> *omps
- void configure_sysmem(
- bool auto_config,
- const Realm::ModuleConfig &core,
- const Argument<Scaled<std::int64_t>> &numamem,
- Argument<Scaled<std::int64_t>> *sysmem
-
std::string_view get_parsed_LEGATE_CONFIG()
- Returns:
Get the value of LEGATE_CONFIG that was parsed.
-
Config handle_legate_args()
Parse
LEGATE_CONFIG
and generate aConfig
database from it.- Returns:
The configuration of Legate.
-
ParsedArgs parse_args(std::vector<std::string> args)
Parse the given command-line flags and return their values.
args
must not be empty.- Parameters:
args – A list of command-line flags.
- Returns:
The parsed command-line values.
-
template<typename StringType>
std::vector<StringType> string_split( - std::string_view command,
- const char sep
-
bool multi_node_job()
- Returns:
true
when Legate is being invoked as a multi-node job,false
otherwise.
- std::vector<std::string> deduplicate_command_line_flags(
- Span<const std::string> args
De-duplicate a series of command-line flags, preserving the relative ordering of the flags.
Given:
This routine returns:["--foo", "--bar", "--baz", "bop", "--foo=1"]
Note that the relative ordering of arguments is preserved.["--bar", "--baz", "bop", "--foo=1"]
- Parameters:
args – The arguments to de-duplicate.
- Returns:
The de-duplicated flags.
-
void set_mpi_wrapper_libraries()
- ProjectionFunction *find_projection_function(
- Legion::ProjectionID proj_id
- void register_affine_projection_functor(
- std::uint32_t src_ndim,
- const proj::SymbolicPoint &point,
- Legion::ProjectionID proj_id
- void register_delinearizing_projection_functor(
- const tuple<std::uint64_t> &color_shape,
- Legion::ProjectionID proj_id
- void register_compound_projection_functor(
- const tuple<std::uint64_t> &color_shape,
- const proj::SymbolicPoint &point,
- Legion::ProjectionID proj_id
-
Logger &log_legate()
-
Logger &log_legate_partitioner()
-
void register_legate_core_tasks(Library &core_lib)
-
void register_exception_reduction_op(const Library &context)
-
bool has_started()
-
bool has_finished()
- void register_legate_core_sharding_functors(
- const detail::Library &core_library
- Legion::ShardingID find_sharding_functor_by_projection_functor(
- Legion::ProjectionID proj_id
- void create_sharding_functor_using_projection(
- Legion::ShardID shard_id,
- Legion::ProjectionID proj_id,
- const mapping::ProcessorRange &range
- void create_sharding_functor_using_projection(
- Legion::ShardingID shard_id,
- Legion::ProjectionID proj_id,
- const mapping::ProcessorRange &range
-
template<typename REDOP>
void register_reduction_callback( - const Legion::RegistrationCallbackArgs &args
- void inline_task_body(
- const Task &task,
- VariantCode variant_code,
- VariantImpl variant_impl
- void legion_task_body(
- VariantImpl variant_impl,
- VariantCode variant_kind,
- std::optional<std::string_view> task_name,
- const void *args,
- std::size_t arglen,
- Processor p
- void show_progress(
- const DomainPoint &index_point,
- std::string_view task_name,
- std::string_view provenance,
- Legion::Context ctx,
- Legion::Runtime *runtime
-
bool operator==(const TaskConfig &lhs, const TaskConfig &rhs)
-
bool operator!=(const TaskConfig &lhs, const TaskConfig &rhs)
- bool operator==(
- const TaskSignature::Nargs &lhs,
- const TaskSignature::Nargs &rhs
- bool operator!=(
- const TaskSignature::Nargs &lhs,
- const TaskSignature::Nargs &rhs
-
bool operator==(const TaskSignature &lhs, const TaskSignature &rhs)
-
bool operator!=(const TaskSignature &lhs, const TaskSignature &rhs)
- void task_wrapper(
- VariantImpl variant_impl,
- VariantCode variant_kind,
- std::optional<std::string_view> task_name,
- const void *args,
- std::size_t arglen,
- const void*,
- std::size_t,
- Processor p
- void task_wrapper(
- VariantImpl,
- VariantCode,
- std::optional<std::string_view>,
- const void*,
- std::size_t,
- const void*,
- std::size_t,
- Legion::Processor
-
template<VariantImpl variant_fn, VariantCode variant_kind>
inline void task_wrapper_dyn_name( - const void *args,
- std::size_t arglen,
- const void *userdata,
- std::size_t userlen,
- Legion::Processor p
-
LEGATE_SELECTOR_SPECIALIZATION(CPU, cpu)
-
LEGATE_SELECTOR_SPECIALIZATION(OMP, omp)
-
LEGATE_SELECTOR_SPECIALIZATION(GPU, gpu)
-
InternalSharedPtr<Type> primitive_type(Type::Code code)
-
InternalSharedPtr<Type> string_type()
-
InternalSharedPtr<Type> binary_type(std::uint32_t size)
- InternalSharedPtr<Type> element_type,
- std::uint32_t N
- std::vector<InternalSharedPtr<Type>> field_types,
- bool align
- InternalSharedPtr<Type> element_type
-
InternalSharedPtr<Type> bool_()
-
InternalSharedPtr<Type> int8()
-
InternalSharedPtr<Type> int16()
-
InternalSharedPtr<Type> int32()
-
InternalSharedPtr<Type> int64()
-
InternalSharedPtr<Type> uint8()
-
InternalSharedPtr<Type> uint16()
-
InternalSharedPtr<Type> uint32()
-
InternalSharedPtr<Type> uint64()
-
InternalSharedPtr<Type> float16()
-
InternalSharedPtr<Type> float32()
-
InternalSharedPtr<Type> float64()
-
InternalSharedPtr<Type> complex64()
-
InternalSharedPtr<Type> complex128()
-
InternalSharedPtr<FixedArrayType> point_type(std::uint32_t ndim)
-
InternalSharedPtr<StructType> rect_type(std::uint32_t ndim)
-
InternalSharedPtr<Type> null_type()
-
InternalSharedPtr<Type> domain_type()
- const InternalSharedPtr<Type> &type,
- std::uint32_t ndim
- const InternalSharedPtr<Type> &type,
- std::uint32_t ndim
- void abort_handler(
- std::string_view file,
- std::string_view func,
- int line,
- std::stringstream *ss
-
template<typename ...T>
void abort_handler_tpl( - std::string_view file,
- std::string_view func,
- int line,
- T&&... args
-
std::string demangle_type(const std::type_info &ti)
- std::pair<void*, std::size_t> align_for_unpack_impl(
- void *ptr,
- std::size_t capacity,
- std::size_t bytes,
- std::size_t align
- std::size_t round_up_to_multiple(
- std::size_t value,
- std::size_t round_to
-
template<typename T>
std::pair<void*, std::size_t> align_for_unpack(
)
-
template<typename T>
std::size_t max_aligned_size_for_type()
-
template<typename T>
zip_detail::Zipper<zip_detail::ZiperatorShortest, Enumerator, T> enumerate( - T &&iterable,
- typename Enumerator::value_type start = {}
Enumerate an iterable.
The enumerator is classed as a bidirectional iterator, so can be both incremented and decremented. Decrementing the enumerator will decrease the count. However, this only applies if
iterable
is itself at least bidirectional. Ifiterable
does not satisfy bidirectional iteration, then the returned enumerator will assume the iterator category ofiterable
.std::vector<int> my_vector{1, 2, 3, 4, 5}; // Enumerate a vector starting from index 0 for (auto&& [idx, val] : legate::detail::enumerate(my_vector)) { std::cout << "accessing element " << idx << " of vector: " << val << '\n'; // a sanity check EXPECT_EQ(my_vector[idx], val); } // Enumerate the vector, but enumerator starts at index 3. Note that the enumerator start has // no bearing on the thing being enumerated. The vector is still iterated over from start to // finish! auto enum_start = 3; for (auto&& [idx, val] : legate::detail::enumerate(my_vector, enum_start)) { std::cout << "enumerator has value: " << idx << '\n'; std::cout << "accessing element " << idx - enum_start << " of vector: " << val << '\n'; EXPECT_EQ(my_vector[idx - enum_start], val); }
- Parameters:
iterable – The iterable to enumerate
start – [optional] Set the starting value for the enumerator
- Returns:
The enumerator iterator adaptor
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_TEST)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_SHOW_USAGE)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_AUTO_CONFIG)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_SHOW_CONFIG)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_SHOW_PROGRESS)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_EMPTY_TASK)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_SYNC_STREAM_VIEW)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_LOG_MAPPING)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_LOG_PARTITIONING)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_WARMUP_NCCL)
-
LEGATE_DEFINE_ENV_VAR(std::string, LEGION_DEFAULT_ARGS)
-
LEGATE_DEFINE_ENV_VAR(std::uint32_t, LEGATE_MAX_EXCEPTION_SIZE)
-
LEGATE_DEFINE_ENV_VAR(std::int64_t, LEGATE_MIN_CPU_CHUNK)
-
LEGATE_DEFINE_ENV_VAR(std::int64_t, LEGATE_MIN_GPU_CHUNK)
-
LEGATE_DEFINE_ENV_VAR(std::int64_t, LEGATE_MIN_OMP_CHUNK)
-
LEGATE_DEFINE_ENV_VAR(std::uint32_t, LEGATE_WINDOW_SIZE)
-
LEGATE_DEFINE_ENV_VAR(std::uint32_t, LEGATE_FIELD_REUSE_FRAC)
-
LEGATE_DEFINE_ENV_VAR(std::uint32_t, LEGATE_FIELD_REUSE_FREQ)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_CONSENSUS)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_DISABLE_MPI)
-
LEGATE_DEFINE_ENV_VAR(std::string, LEGATE_CONFIG)
-
LEGATE_DEFINE_ENV_VAR(std::string, LEGATE_MPI_WRAPPER)
-
LEGATE_DEFINE_ENV_VAR(std::string, LEGATE_CUDA_DRIVER)
-
LEGATE_DEFINE_ENV_VAR(bool, LEGATE_IO_USE_VFD_GDS)
-
LEGATE_DEFINE_ENV_VAR(std::string, REALM_UCP_BOOTSTRAP_MODE)
-
std::string make_error_message(Span<const ErrorDescription> errs)
-
template<typename El, typename Ex, typename L, typename A>
FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>>::difference_type operator-( - const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &self,
- const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &other
-
template<typename El, typename Ex, typename L, typename A>
FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> operator-( - FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> self,
- typename FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>>::difference_type n
-
template<typename El, typename Ex, typename L, typename A>
FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> operator+( - FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> self,
- typename FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>>::difference_type n
-
template<typename El, typename Ex, typename L, typename A>
FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> operator+( - typename FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>>::difference_type n,
- FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> self
-
template<typename El, typename Ex, typename L, typename A>
bool operator==( - const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &lhs,
- const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &rhs
-
template<typename El, typename Ex, typename L, typename A>
bool operator!=( - const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &lhs,
- const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &rhs
-
template<typename El, typename Ex, typename L, typename A>
bool operator<( - const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &lhs,
- const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &rhs
-
template<typename El, typename Ex, typename L, typename A>
bool operator>( - const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &lhs,
- const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &rhs
-
template<typename El, typename Ex, typename L, typename A>
bool operator<=( - const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &lhs,
- const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &rhs
-
template<typename El, typename Ex, typename L, typename A>
bool operator>=( - const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &lhs,
- const FlatMDSpanIterator<::cuda::std::mdspan<El, Ex, L, A>> &rhs
-
template<typename T>
FlatMDSpanView(T span) -> FlatMDSpanView<T>
-
template<typename T>
std::pair<void*, std::size_t> pack_buffer( - void *buf,
- std::size_t remaining_cap,
- T &&value
-
template<typename T>
std::pair<void*, std::size_t> pack_buffer( - void *buf,
- std::size_t remaining_cap,
- std::size_t nelem,
- const T *value
-
template<typename T>
std::pair<const void*, std::size_t> unpack_buffer( - const void *buf,
- std::size_t remaining_cap,
- T *value
-
template<typename T>
std::pair<const void*, std::size_t> unpack_buffer( - const void *buf,
- std::size_t remaining_cap,
- std::size_t nelem,
- T *const *value
-
std::size_t processor_id()
- void throw_invalid_proc_local_storage_access(
- const std::type_info &value_type
-
template<typename U, typename Alloc, typename P, typename ...Args>
U *construct_from_allocator_(
)
-
LEGATE_PRAGMA_PUSH()
-
LEGATE_PRAGMA_POP()
-
template<typename T = long long>
T safe_strtoll( - const char *env_value,
- char **end_ptr = nullptr
-
bool install_terminate_handler() noexcept
Install the Legate
std::terminate()
handler.This routine is thread-safe, and may be called multiple times. However, only the first invocation has any effect. Subsequent calls to this function have no effect. The user may respect the return value to determine whether the handler was installed.
The installed handler will pretty-print any thrown exceptions, adding a traceback showing where the exception was thrown.
- Returns:
true
if the handlers were installed,false
otherwise.
-
Domain to_domain(Span<const std::uint64_t> shape)
-
Domain to_domain(const tuple<std::uint64_t> &shape)
-
DomainPoint to_domain_point(const tuple<std::uint64_t> &shape)
-
tuple<std::uint64_t> from_domain(const Domain &domain)
- void assert_valid_mapping(
- std::size_t tuple_size,
- const std::vector<std::int32_t> &mapping
- void throw_invalid_tuple_sizes(
- std::size_t lhs_size,
- std::size_t rhs_size
-
void assert_in_range(std::size_t tuple_size, std::int32_t pos)
-
template<typename ...T>
zip_detail::Zipper<zip_detail::ZiperatorShortest, T...> zip_shortest( - T&&... args
Zip a set of containers together.
The adaptor returned by this routine implements a “zip shortest” zip operation. That is, the returned zipper stops when at least one object or container has reached the end. Iterating past that point results in undefined behavior.
The iterators returned by the adaptor support the lowest common denominator of all containers when it comes to iterator functionality. For example, if all containers’ iterators support
std::random_access_iterator_tag
, then the returned iterator will as well.- Parameters:
args – The set of containers to zip.
- Returns:
A zipper constructed from the set of containers. Calling
begin()
orend()
on the zipper returns the corresponding iterators.
-
template<typename ...T>
zip_detail::Zipper<zip_detail::ZiperatorEqual, T...> zip_equal( - T&&... args
Zip a set of containers of equal length together.
The adaptor returned by this routine implements a “zip equal” zip operation. That is, the returned zipper assumes all inputs are of equal size. Debug builds will attempt to verify this invariant upfront, by calling (if applicable) std::size() on the inputs. Iterating past the end results in undefined behavior.
The iterators returned by the adaptor support the lowest common denominator of all containers when it comes to iterator functionality. For example, if all containers’ iterators support
std::random_access_iterator_tag
, then the returned iterator will as well.std::vector<float> vec{1, 2, 3, 4, 5}; std::list<int> list{5, 4, 3, 2, 1}; // Add all elements of a list to each element of a vector for (auto&& [vi, li] : legate::detail::zip_equal(vec, list)) { vi = static_cast<float>(li + 10); std::cout << vi << ", "; }
- Parameters:
args – The set of containers to zip.
- Returns:
A zipper constructed from the set of containers of equal size. Calling
begin()
orend()
on the zipper returns the corresponding iterators.
-
template<typename C, typename T>
bool operator==(
)
-
template<typename C, typename T>
bool operator!=(
)
-
template<typename C, typename T>
bool operator==(
)
-
template<typename C, typename T>
bool operator!=(
)
-
template<typename C, typename T>
bool operator==(
)
-
template<typename C, typename T>
bool operator!=(
)
-
void throw_unsupported_dim(std::int32_t dim)
-
void throw_bad_internal_weak_ptr()
Variables
-
template<typename T>
bool is_pure_move_constructible_v = is_pure_move_constructible<T>::value
-
template<typename T>
bool is_pure_move_assignable_v = is_pure_move_assignable<T>::value
-
template<template<typename...> typename Op, typename ...Args>
bool is_detected_v = is_detected<Op, Args...>::value
-
template<typename T>
bool is_container_v = is_container<T>::value
-
using StoreAnalyzable = std::variant<RegionFieldArg, OutputRegionArg, ScalarStoreArg, ReplicatedScalarStoreArg, WriteOnlyScalarStoreArg>
-
enum class ExceptionMode : std::uint8_t#